论文标题
在Hagedorn相和渐近的DE Sitter空间中的弦之间的对应关系
A correspondence between strings in the Hagedorn phase and asymptotically de Sitter space
论文作者
论文摘要
建立了其高温Hagedorn相中的闭合字符串与渐近的Sitter(DS)空间之间的对应关系。我们确定了一个热的,共形场理论(CFT),一方面,其分区函数等于其HageDorn相的封闭,相互作用,基本串的分区函数,但另一方面,另一方面也等于hartle-hawking(HH)波动的渐近ds ds宇宙。 CFT的Lagrangian是单个标量场的功能,即热标量的冷凝物,与弦的熵密度成正比。该对应关系与抗DE保姆/CFT对应关系以及其对DS/CFT对应关系的一些分析连续性具有一些共同点,但它也具有一些重要的概念和技术差异。 CFT的平衡状态是最大压力和熵之一,它处于高于术的温度,但在参数上接近Hagedorn温度。 CFT超出了半经典重力的状态,因此以替代和取代HH波函数的方式定义了DS宇宙的初始量子状态。 CFT标量场的两点相关函数用于计算渐近DS宇宙中相应度量扰动的光谱,因此,在发电后时期内观察到了宇宙学可观察力。同样,CFT中的较高点相关功能应导致更复杂的宇宙学观察力。
A correspondence between closed strings in their high-temperature Hagedorn phase and asymptotically de Sitter (dS) space is established. We identify a thermal, conformal field theory (CFT) whose partition function is, on the one hand, equal to the partition function of closed, interacting, fundamental strings in their Hagedorn phase yet is, on the other hand, also equal to the Hartle-Hawking (HH) wavefunction of an asymptotically dS Universe. The Lagrangian of the CFT is a functional of a single scalar field, the condensate of a thermal scalar, which is proportional to the entropy density of the strings. The correspondence has some aspects in common with the anti-de Sitter/CFT correspondence, as well as with some of its proposed analytic continuations to a dS/CFT correspondence, but it also has some important conceptual and technical differences. The equilibrium state of the CFT is one of maximal pressure and entropy, and it is at a temperature that is above but parametrically close to the Hagedorn temperature. The CFT is valid beyond the regime of semiclassical gravity and thus defines the initial quantum state of the dS Universe in a way that replaces and supersedes the HH wavefunction. Two-point correlation functions of the CFT scalar field are used to calculate the spectra of the corresponding metric perturbations in the asymptotically dS Universe and, hence, cosmological observables in the post-inflationary epoch. Similarly, higher-point correlation functions in the CFT should lead to more complicated cosmological observables.