论文标题
Semtot:光滑的材料分布,用于优化拓扑算法
SEMDOT: Smooth-Edged Material Distribution for Optimizing Topology Algorithm
论文作者
论文摘要
鉴于工程应用中准确的边界信息的重要性,基于元素的拓扑优化算法能够产生平滑边界。本文提出了一种新的基于元素的连续算法的基本框架。该算法基于平滑的材料分布策略,该策略使用分配给每个元素的固体/空白网格点。该算法命名为优化拓扑的平滑材料分布(SEMDOT),该算法使用有限元分析(FEA)模型中的网格点密度而不是元素密度的元素体积分数。研究了几个数值示例,以证明Semtot的应用和有效性。在这些示例中,与其他拓扑优化方法相比,SEMDOT能够获得具有光滑和明确边界的优化拓扑表现出更好或可比性的性能。通过这些示例,首先讨论了使用Heaviside平滑功能的优势,与Heaviside步骤功能相比。然后,显示了在此算法中引入多个过滤步骤的好处。最后,进行比较以表现出Semtot和一些基于元素的算法之间的差异。使用典型的合规机理设计案例进行了Semtot中采用的灵敏度分析方法的验证。此外,本文提供了用于教育和学术目的的MATLAB SEMDOT守则。
Element-based topology optimization algorithms capable of generating smooth boundaries have drawn serious attention given the significance of accurate boundary information in engineering applications. The basic framework of a new element-based continuum algorithm is proposed in this paper. This algorithm is based on a smooth-edged material distribution strategy that uses solid/void grid points assigned to each element. Named Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT), the algorithm uses elemental volume fractions which depend on the densities of grid points in the Finite Element Analysis (FEA) model rather than elemental densities. Several numerical examples are studied to demonstrate the application and effectiveness of SEMDOT. In these examples, SEMDOT proved to be capable of obtaining optimized topologies with smooth and clear boundaries showing better or comparable performance compared to other topology optimization methods. Through these examples, first, the advantages of using the Heaviside smooth function are discussed in comparison to the Heaviside step function. Then, the benefits of introducing multiple filtering steps in this algorithm are shown. Finally, comparisons are conducted to exhibit the differences between SEMDOT and some well-established element-based algorithms. The validation of the sensitivity analysis method adopted in SEMDOT is conducted using a typical compliant mechanism design case. In addition, this paper provides the Matlab code of SEMDOT for educational and academic purposes.