论文标题

具有确切资源形态的一般国家过渡:一种统一的资源理论方法

General state transitions with exact resource morphisms: a unified resource-theoretic approach

论文作者

Zhou, Wenbin, Buscemi, Francesco

论文摘要

给定密度矩阵的非空封闭凸子集$ \ MATHSF {f} $,我们制定条件,保证存在$ \ m m athsf {f} $ - 形态学(即,完全取决的痕量抛光线性映射,将其映射到Mathsf {f} $之间,将其自身映射到两次仲裁中)。虽然我们允许过渡中的错误,但相应的映射必须是精确的$ \ mathsf {f} $ - 形态。我们的发现虽然纯粹是几何的,但以资源理论语言制定,并提供了一个共同的框架,其中包括各种资源理论,包括两分和多部分纠缠的资源理论,连贯性,雅典性和不对称的区分性。我们展示了如何专门针对身体感兴趣的某些情况,我们的总体结果将能够统一和扩展以前的分析。我们还研究了具有最大足智多谋的状态的条件,此处将其定义为密度矩阵,可以通过合适的$ \ Mathsf {f} $形态从中获得任何其他矩阵。此外,我们定量地表征了最佳资源稀释和蒸馏的范式任务,就像两个端点之一的特殊过渡是最大程度地足智多谋的。

Given a non-empty closed convex subset $\mathsf{F}$ of density matrices, we formulate conditions that guarantee the existence of an $\mathsf{F}$-morphism (namely, a completely positive trace-preserving linear map that maps $\mathsf{F}$ into itself) between two arbitrarily chosen density matrices. While we allow errors in the transition, the corresponding map is required to be an exact $\mathsf{F}$-morphism. Our findings, though purely geometrical, are formulated in a resource-theoretic language and provide a common framework that comprises various resource theories, including the resource theories of bipartite and multipartite entanglement, coherence, athermality, and asymmetric distinguishability. We show how, when specialized to some situations of physical interest, our general results are able to unify and extend previous analyses. We also study conditions for the existence of maximally resourceful states, defined here as density matrices from which any other one can be obtained by means of a suitable $\mathsf{F}$-morphism. Moreover, we quantitatively characterize the paradigmatic tasks of optimal resource dilution and distillation, as special transitions in which one of the two endpoints is maximally resourceful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源