论文标题

最短路径问题的拉索公式

Lasso formulation of the shortest path problem

论文作者

Dong, Anqi, Taghvaei, Amirhossein, Georgiou, Tryphon T.

论文摘要

最短的路径问题被提出为$ L_1 $登记的回归问题,称为Lasso。基于此公式,在Dijkstra的最短路径算法与套索问题的最小角回归(LARS)之间建立了联系。具体而言,通过改变从Infinity到零的正则化参数(正则化路径)获得的套索问题的解路径对应于出现在双向Dijkstra算法中的最短路径树。尽管Dijkstra的算法和LARS配方提供了精确的解决方案,但是当图的大小非常大时,它们变得不切实际。为了克服这个问题,提出了乘数的交替方向方法(ADMM)来解决套索公式。由此产生的算法通过牺牲精确性来产生最短路径的良好和快速近似,这在许多应用中可能并不是绝对必要的。提供了数值实验来说明所提出的方法的性能。

The shortest path problem is formulated as an $l_1$-regularized regression problem, known as lasso. Based on this formulation, a connection is established between Dijkstra's shortest path algorithm and the least angle regression (LARS) for the lasso problem. Specifically, the solution path of the lasso problem, obtained by varying the regularization parameter from infinity to zero (the regularization path), corresponds to shortest path trees that appear in the bi-directional Dijkstra algorithm. Although Dijkstra's algorithm and the LARS formulation provide exact solutions, they become impractical when the size of the graph is exceedingly large. To overcome this issue, the alternating direction method of multipliers (ADMM) is proposed to solve the lasso formulation. The resulting algorithm produces good and fast approximations of the shortest path by sacrificing exactness that may not be absolutely essential in many applications. Numerical experiments are provided to illustrate the performance of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源