论文标题

一种人工智能/统计解决方案,用于量化添加剂制造中热补偿的材料失真

An Artificial-intelligence/Statistics Solution to Quantify Material Distortion for Thermal Compensation in Additive Manufacturing

论文作者

Wang, Chao, Li, Shaofan, Zeng, Danielle, Zhu, Xinhai

论文摘要

在本文中,我们介绍了一种概率统计解决方案或人工智能(AI)方法,以识别和量化永久性(非零应变)连续/材料变形,仅基于空间配置中的扫描材料数据以及初始设计配置或材料配置的形状。这个问题的挑战在于,我们只知道三维(3D)印刷产品的空间配置和设计配置的形状,而对于特定的扫描材料点,我们不知道其初始或设计的参考配置中的相应材料坐标,前提是我们不知道我们不知道对实际物理缺陷过程的详细信息信息。与基于物理的建模不同,此处开发的方法是一种数据驱动的人工智能方法,该方法通过不完整的变形数据或实际物理变形过程中缺少信息来解决该问题。我们创造了该方法是基于AI的材料变形算法。 该方法在查找和设计添加剂制造中的3D印刷产品的热补偿配置方面具有实际意义和重要应用,这是最前沿3D打印技术的核心。在本文中,我们证明了所提出的AI连续/材料变形寻找方法可以准确地找到复杂的3D印刷结构组件的永久性热变形配置,从而确定热补偿设计配置,以最大程度地减少温度波动对3D印刷结构的影响,对温度变化的3D印刷结构组件敏感。

In this paper, we introduce a probabilistic statistics solution or artificial intelligence (AI) approach to identify and quantify permanent (non-zero strain) continuum/material deformation only based on the scanned material data in the spatial configuration and the shape of the initial design configuration or the material configuration. The challenge of this problem is that we only know the scanned material data in the spatial configuration and the shape of the design configuration of three-dimensional (3D) printed products, whereas for a specific scanned material point we do not know its corresponding material coordinates in the initial or designed referential configuration, provided that we do not know the detailed information on actual physical deformation process. Different from physics-based modeling, the method developed here is a data-driven artificial intelligence method, which solves the problem with incomplete deformation data or with missing information of actual physical deformation process. We coined the method is an AI-based material deformation finding algorithm. This method has practical significance and important applications in finding and designing thermal compensation configuration of a 3D printed product in additive manufacturing, which is at the heart of the cutting edge 3D printing technology. In this paper, we demonstrate that the proposed AI continuum/material deformation finding approach can accurately find permanent thermal deformation configuration for a complex 3D printed structure component, and hence to identify the thermal compensation design configuration in order to minimizing the impact of temperature fluctuations on 3D printed structure components that are sensitive to changes of temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源