论文标题
$ l^1 $:单位球的几何形状
Lacunary polynomials in $L^1$: geometry of the unit sphere
论文作者
论文摘要
令$λ$为有限的非负整数,让$ \ Mathcal p(λ)$为单元的线性船体,$ z^k $,$ k \inλ$,被视为单位圈子上$ l^1 $的子空间。我们以$ \ MATHCAL P(λ)$的形式表征了单位球的极端和暴露点。
Let $Λ$ be a finite set of nonnegative integers, and let $\mathcal P(Λ)$ be the linear hull of the monomials $z^k$ with $k\inΛ$, viewed as a subspace of $L^1$ on the unit circle. We characterize the extreme and exposed points of the unit ball in $\mathcal P(Λ)$.