论文标题

在宏观经济预测,国家目标设定和全球竞争性评估中应用非线性自我回旋(NARX)神经网络的应用

Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment

论文作者

Tang, Liyang

论文摘要

本文通过文献综述选择了NARX神经网络作为方法,并在涉及宏观经济预测,国家目标设定和全球竞争性评估的应用程序场景下构建了特定的Narx神经网络。通过对中国,美国和欧元区的案例研究,这项研究探讨了那些有限和部分外源投入或丰富且全面的外源投入如何如何,一组最相关的外源性投入或大量的外源性投入或大量的外源性投入,涵盖了宏观经济的所有主要方面,整个领域相关的地区和整个领域的既有特定的exputs coptive toctive toctors casen casenial Interciption NED exputs intupts intuts intuts intuts intuts intuts intuts intuts intuts intuts intuts contuts intuts intuts contuts intuts contuts intupts in特定宏观经济指标或指数的网络。通过对俄罗斯的案例研究,本文探讨了有限和最相关的外源投入集或大量且全面的外源输入集,该集合特别影响了这些特定的NARX神经网络在国家目标设定中的预测性能。最后,进行了有关NARX神经网络在全球竞争力指标(GCIS)预测各种经济学预测中的应用的比较研究,以探索是否根据某些经济体的GCI相关数据进行培训的特定Narx神经网络是否可以对其他经济学的经济性进行足够准确的预测,并对其他经济性进行了对某些经济学的培训,以及对某些经济学的培训,以及对某些经济学的培训,以及对某些经济学的培训,以及对NARX Neurs Neurs Neurs Neurs Neurs Neurs neurs neurs neurs neurs and the the Inter the Inter the Inalx Nearx Nearx ne的预测是否能够进行。与不同类型的经济体相比,相同类型经济的GCI的准确预测。基于上述所有成功应用程序,本文提供了有关应用全面训练的NARX神经网络的政策建议,这些Narx神经网络被评估为有资格,以协助甚至取代人脑的演绎和归纳能力,以完成各种适当的任务。

This paper selects the NARX neural network as the method through literature review, and constructs specific NARX neural networks under application scenarios involving macroeconomic forecasting, national goal setting and global competitiveness assessment. Through case studies on China, US and Eurozone, this study explores how those limited & partial exogenous inputs or abundant & comprehensive exogenous inputs, a small set of most relevant exogenous inputs or a large set of exogenous inputs covering all major aspects of the macro economy, whole area related exogenous inputs or both whole area and subdivision area related exogenous inputs specifically affect the forecasting performance of NARX neural networks for specific macroeconomic indicators or indices. Through the case study on Russia this paper explores how the limited & most relevant exogenous inputs set or the abundant & comprehensive exogenous inputs set specifically influences the prediction performance of those specific NARX neural networks for national goal setting. Finally, comparative studies on the application of NARX neural networks for the forecasts of Global Competitiveness Indices (GCIs) of various economies are conducted, in order to explore whether the specific NARX neural network trained on the basis of the GCI related data of some economies can make sufficiently accurate predictions about GCIs of other economies, and whether the specific NARX neural network trained on the basis of the data of some type of economies can give more accurate predictions about GCIs of the same type of economies than those of different type of economies. Based on all of the above successful application, this paper provides policy recommendations on applying fully trained NARX neural networks that are assessed as qualified to assist or even replace the deductive and inductive abilities of the human brain in a variety of appropriate tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源