论文标题

S-Prime和S Weakly Prime子模型

S-prime and S-weakly prime submodules

论文作者

Ugurlu, Emel Aslankarayigit

论文摘要

在这项研究中,所有环具有非零身份的交换性,所有模块都被认为是Unital的。令$ m $为左$ r $ - 模块。如果$ 0_ {m} \ neq f(m)\ in n $ in n $ in n $ n $或$ f(m)\ subseteq n,$ f(m)\ subseteq n,$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ f \ subseteq n,$ n $ in $ f \ in $ f \ in s = end(m)$和m $。获得了一些有关$ s $ prime和$ s $ weakly Prime subsodules的结果。然后,我们研究$ s $ prime和$ s $ weakly prime subplication模块。同样,对于$ r $ -Modules $ m_ {1} $和$ m_ {2},$我们检查$ s $ - prime和$ s $ - $ s-neakly prime subsodules的$ m = m_ {1} \ times m_ {2},$ $ s_ {2} = end(m_ {2})$。

In this study, all rings are commutative with non-zero identity and all modules are considered to be unital. Let $M$ be a left $R$-module. A proper submodule $N$ of $M$ is called an $S$-$weakly$ $prime$ submodule if $0_{M}\neq f(m)\in N$ implies that either $m\in N$ or $f(M)\subseteq N,$ where $f\in S=End(M)$ and $m\in M$. Some results concerning $S$-prime and $S$-weakly prime submodules are obtained. Then we study $S$-prime and $S$-weakly prime submodules of multiplication modules. Also for $R$-modules $M_{1}$ and $M_{2},$ we examine $S$-prime and $S$-weakly prime submodules of $M=M_{1}\times M_{2},$ where $S=S_{1}\times S_{2},$ $S_{1}=End(M_{1})$ and $S_{2}=End(M_{2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源