论文标题
塞尔伯格整体公式的组合证明
Combinatorial Proof of Selberg's Integral Formula
论文作者
论文摘要
在本文中,我们提供了塞尔伯格整体公式的组合证明。首先,我们给出了有关特定相关有向图的拓扑顺序数量的射合定理的徒证明。然后,塞尔伯格的整体公式遵循归纳。这解决了R. Stanley在2008年提出的问题。我们的证明是基于安德森公式的分析证明。作为证明的一部分,我们显示了对广义范德曼德决定因素的进一步概括。
In this paper we present a combinatorial proof of Selberg's integral formula. We start by giving a bijective proof of a Theorem about the number of topological orders of a certain related directed graph. Selberg's Integral Formula then follows by induction. This solves a problem posed by R. Stanley in 2008. Our proof is based on Andersons analytic proof of the formula. As part of the proof we show a further generalisation of the generalised Vandermonde determinant.