论文标题

有两个论点,即Riemann Zeta功能的非平凡零是不合理的。 ii

Two arguments that the nontrivial zeros of the Riemann zeta function are irrational. II

论文作者

Wolf, Marek

论文摘要

我们扩展了先前的计算机实验的结果,该实验在第一个2600个非平凡零$γ_l$上进行的Riemann Zeta函数的$γ_l$用1000位数字精度计算为40000个第一个零,并给出了40000个小数位数字的精度。我们计算了这些零分数扩展的分母的几何方法,在所有情况下,我们都会使值非常接近khinchin的常数,这表明$γ_l$是不合理的。接下来,我们计算了分母的$ n $ th $ th $ q_n $ q_n $的持续分数的收敛量,从而获得非常接近khinchin的值----- l {é} vy vy常数,再次支持共同的观点,即$γ_l$是不合理的。

We extend the results of our previous computer experiment performed on the first 2600 nontrivial zeros $γ_l$ of the Riemann zeta function calculated with 1000 digits accuracy to the set of 40000 first zeros given with 40000 decimal digits accuracy. We calculated the geometrical means of the denominators of continued fractions expansions of these zeros and for all cases we get values very close to the Khinchin's constant, which suggests that $γ_l$ are irrational. Next we have calculated the $n$-th square roots of the denominators $Q_n$ of the convergents of the continued fractions obtaining values very close to the Khinchin---L{é}vy constant, again supporting the common opinion that $γ_l$ are irrational.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源