论文标题

基于进化的基于进化的稀疏回归,用于实验振荡器的实验鉴定

Evolutionary-Based Sparse Regression for the Experimental Identification of Duffing Oscillator

论文作者

Goharoodi, Saeideh Khatiry, Dekemele, Kevin, Loccufier, Mia, Dupre, Luc, Crevecoeur, Guillaume

论文摘要

在本文中,提出了一种基于进化的稀疏回归算法,并将其应用于从振荡振荡器设置和数值模拟数据中收集的实验数据上。我们的目的是将库仑摩擦术语识别为系统的普通微分方程的一部分。使用稀疏识别对此非线性系统的正确识别取决于选择功能库中包含的非线性的正确形式。因此,在这项工作中,基于进化的稀疏标识是在稀疏识别构造库时取代对用户知识的需求。基于数据驱动的进化方法构建库是扩展非线性函数空间的有效方法,从而使稀疏回归适用于广泛的功能空间。 ,E结果表明,该方法为揭示行李振荡器的物理性质提供了有效算法。另外,研究了模拟中各种噪声的识别算法的鲁棒性。 ,E提出的方法可能应用于机器人,机器人技术和电子产品中其他非线性动态系统。

In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. ,e results show that the method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the robustness of the identification algorithm is investigated for various levels of noise in simulation. ,e proposed method has possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源