论文标题

顺序推荐通过时间感知的细心记忆网络

Sequential Recommender via Time-aware Attentive Memory Network

论文作者

Ji, Wendi, Wang, Keqiang, Wang, Xiaoling, Chen, TingWei, Cristea, Alexandra

论文摘要

推荐系统旨在帮助用户发现不断增长的物品中最喜欢的内容。尽管深入学习得到了极大的改善,但他们仍然面临几个挑战:(1)行为比句子中的单词要复杂得多,因此传统的专注和经常性模型可能无法捕获用户偏好的时间动态。 (2)用户的偏好是多重且不断发展的,因此很难整合长期记忆和短期意图。 在本文中,我们提出了一种时间门控方法来改善注意力机制和复发单位,以便在信息过滤和状态过渡中都可以考虑时间信息。此外,我们提出了一个多跳时感知的细心记忆网络(MTAM),以整合长期和短期偏好。我们使用拟议的时间感知的GRU网络来学习短期意图并在用户内存中保持先前的记录。我们将短期意图视为查询,并通过提出的时间意识关注设计多跳的内存阅读操作,以根据当前的意图和长期记忆生成用户表示。我们的方法对于候选任务是可扩展的,可以看作是基于点产生的TOP-K建议的潜在分解的非线性概括。最后,我们对六个基准数据集进行了广泛的实验,实验结果证明了我们的MTAM和时间门控方法的有效性。

Recommendation systems aim to assist users to discover most preferred contents from an ever-growing corpus of items. Although recommenders have been greatly improved by deep learning, they still faces several challenges: (1) Behaviors are much more complex than words in sentences, so traditional attentive and recurrent models may fail in capturing the temporal dynamics of user preferences. (2) The preferences of users are multiple and evolving, so it is difficult to integrate long-term memory and short-term intent. In this paper, we propose a temporal gating methodology to improve attention mechanism and recurrent units, so that temporal information can be considered in both information filtering and state transition. Additionally, we propose a Multi-hop Time-aware Attentive Memory network (MTAM) to integrate long-term and short-term preferences. We use the proposed time-aware GRU network to learn the short-term intent and maintain prior records in user memory. We treat the short-term intent as a query and design a multi-hop memory reading operation via the proposed time-aware attention to generate user representation based on the current intent and long-term memory. Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation. Finally, we conduct extensive experiments on six benchmark datasets and the experimental results demonstrate the effectiveness of our MTAM and temporal gating methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源