论文标题

黑暗能源调查中的山脊,用于宇宙槽识别

Ridges in the Dark Energy Survey for cosmic trough identification

论文作者

Moews, Ben, Schmitz, Morgan A., Lawler, Andrew J., Zuntz, Joe, Malz, Alex I., de Souza, Rafael S., Vilalta, Ricardo, Krone-Martins, Alberto, Ishida, Emille E. O.

论文摘要

宇宙空隙及其相应的红移投影质量密度(称为槽)在我们试图建模宇宙大规模结构的尝试中起着重要作用。了解这些结构使我们能够将标准模型与替代宇宙学进行比较,限制状态的暗能量方程,并区分不同的重力理论。在本文中,我们扩展了亚频率约束的平均移位算法,这是一种最近引入的估计密度脊的方法,并将其应用于深色能量调查Y1数据释放的2D弱透镜质量密度图,以识别曲线丝状结构。我们将获得的脊与以前在相同数据中提取谷结构的方法进行了比较,并将路标应用于基于替代小波的方法来约束密度。然后,我们调用嘈杂和无噪声模拟之间的瓦斯坦师距离,以验证我们方法的降解能力。我们的结果表明,山脊估计是将弱透镜可观察到恢复大规模结构的前体的生存能力,为更具用途和有效搜索槽的搜索铺平了道路。

Cosmic voids and their corresponding redshift-projected mass densities, known as troughs, play an important role in our attempt to model the large-scale structure of the Universe. Understanding these structures enables us to compare the standard model with alternative cosmologies, constrain the dark energy equation of state, and distinguish between different gravitational theories. In this paper, we extend the subspace-constrained mean shift algorithm, a recently introduced method to estimate density ridges, and apply it to 2D weak lensing mass density maps from the Dark Energy Survey Y1 data release to identify curvilinear filamentary structures. We compare the obtained ridges with previous approaches to extract trough structure in the same data, and apply curvelets as an alternative wavelet-based method to constrain densities. We then invoke the Wasserstein distance between noisy and noiseless simulations to validate the denoising capabilities of our method. Our results demonstrate the viability of ridge estimation as a precursor for denoising weak lensing observables to recover the large-scale structure, paving the way for a more versatile and effective search for troughs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源