论文标题

增强言语情感识别的生成对抗网络

Augmenting Generative Adversarial Networks for Speech Emotion Recognition

论文作者

Latif, Siddique, Asim, Muhammad, Rana, Rajib, Khalifa, Sara, Jurdak, Raja, Schuller, Björn W.

论文摘要

生成的对抗网络(GAN)表现出在学习情感属性和生成新数据样本方面的潜力。但是,通常会因更大的语音情感识别(SER)数据的不可用而阻碍它们的性能。在这项工作中,我们提出了一个框架,该框架利用混合数据增强方案来增强功能学习和发电中的gan。为了显示所提出的框架的有效性,我们介绍了(i)合成特征向量的SER的结果,(ii)具有合成特征的训练数据增强,(III)在压缩表示中编码的特征。我们的结果表明,所提出的框架可以有效地学习压缩的情绪表示形式,并且可以生成合成样本,从而有助于改善corpus内部和交叉评估的性能。

Generative adversarial networks (GANs) have shown potential in learning emotional attributes and generating new data samples. However, their performance is usually hindered by the unavailability of larger speech emotion recognition (SER) data. In this work, we propose a framework that utilises the mixup data augmentation scheme to augment the GAN in feature learning and generation. To show the effectiveness of the proposed framework, we present results for SER on (i) synthetic feature vectors, (ii) augmentation of the training data with synthetic features, (iii) encoded features in compressed representation. Our results show that the proposed framework can effectively learn compressed emotional representations as well as it can generate synthetic samples that help improve performance in within-corpus and cross-corpus evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源