论文标题
连续体中的floquet-surface绑定状态在一个共鸣的1D倾斜无缺陷晶格中
Floquet-surface bound states in the continuum in a resonantly driven 1D tilted defect-free lattice
论文作者
论文摘要
我们研究了嵌入连续体(BICS)的浮点 - 表面结合状态,并将连续体(BOC)绑定到一个共鸣的1D倾斜无缺陷晶格中。与特殊量身定制的电位辅助的脆弱的单粒子BIC相反,我们发现浮力表面BIC稳定在结构扰动中,可以在广泛的参数空间中存在。通过在高频限制中使用多个时间尺度的渐近分析,可以通过有效的TAMM型缺陷来分析Floquet-Surface结合状态的出现,这是由于周期性驾驶与倾斜度之间的共鸣引起的边界所引起的。还分析了现有的Floquet-Surface状态的相边界。基于表面状态的排斥效应,我们建议通过量子行走来检测过渡点并测量浮点线结合状态的数量。我们的工作为量子系统中BIC的实验实现打开了新的大门。
We study the Floquet-surface bound states embedded in the continuum (BICs) and bound states out the continuum (BOCs)in a resonantly driven 1D tilted defect-free lattice. In contrast to fragile single-particle BICs assisted by specially tailored potentials, we find that Floquet-surface BICs, stable against structural perturbations, can exist in a wide range of parameter space. By using a multiple-time-scale asymptotic analysis in the high-frequency limit, the appearance of Floquet-surface bound states can be analytically explained by effective Tamm-type defects at boundaries induced by the resonance between the periodic driving and tilt. The phase boundary of existing Floquet-surface states is also analytically given. Based on the repulsion effect of surface states, we propose to detect transition points and measure the number of Floquet-surface bound states by quantum walk. Our work opens a new door to experimental realization of BICs in quantum system.