论文标题
爱因斯坦 - de haas效应在磁平衡的无线电频率下
The Einstein - de Haas effect at radio frequencies in and near magnetic equilibrium
论文作者
论文摘要
Einstein-de Haas(EDH)效应及其倒数的Barnett效应是磁力和唯一产生磁矩与总角动量比率的量度的基础。这些效果很小,通常很难观察到,因为当代技术使他们的学习能够进行新的方法,因此人们正在享受兴趣的复兴。纳米力学系统中的高机械共振频率尤其是观察EDH扭矩的巨大优势。在无线电频率下,EDH效应可以与常规跨产品磁性扭矩相当甚至超过。此外,如果磁系统保持在准静态平衡状态,则RF-EDH扭矩相对于交叉产物扭矩有望相对于交叉产物扭矩进行90度,如果两个扭矩源都是可操作的,则可以在四足动物中分离。射频EDH的测量通过千分尺尺度,单晶Yttrium铁石榴石(YIG)磁盘的完整磁滞范围来证明。在低偏置场的涡旋状态下观察到平衡行为。 Barkhausen样特征在涡旋状态的较高场地内EDH扭矩中出现,揭示了磁性障碍太弱,无法通过平面内跨产品扭矩可见。除了涡旋歼灭之外,EDH扭矩与偏置场中还出现了峰值,并且它们的相位特征表明Einstein-De HAAS效应的额外效用在RF驱动的自旋动力学研究中。
The Einstein-de Haas (EdH) effect and its reciprocal the Barnett effect are fundamental to magnetism and uniquely yield measures of the ratio of magnetic moment to total angular momentum. These effects, small and generally difficult to observe, are enjoying a resurgence of interest as contemporary techniques enable new approaches to their study. The high mechanical resonance frequencies in nanomechanical systems offer a tremendous advantage for the observation of EdH torques in particular. At radio frequencies, the EdH effect can become comparable to or even exceed in magnitude conventional cross-product magnetic torques. In addition, the RF-EdH torque is expected to be phase-shifted by 90 degrees relative to cross-product torques, provided the magnetic system remains in quasi-static equilibrium, enabling separation in quadratures when both sources of torque are operative. Radio frequency EdH measurements are demonstrated through the full hysteresis range of micrometer scale, monocrystalline yttrium iron garnet (YIG) disks. Equilibrium behavior is observed in the vortex state at low bias field. Barkhausen-like features emerge in the in-plane EdH torque at higher fields in the vortex state, revealing magnetic disorder too weak to be visible through the in-plane cross-product torque. Beyond vortex annihilation, peaks arise in the EdH torque versus bias field, and these together with their phase signatures indicate additional utility of the Einstein-de Haas effect for the study of RF-driven spin dynamics.