论文标题

低复杂性矢量通过深神经网络量化压缩感

Low-Complexity Vector Quantized Compressed Sensing via Deep Neural Networks

论文作者

Leinonen, Markus, Codreanu, Marian

论文摘要

可以通过压缩传感(CS)获取许多无线和信号采集应用中遇到的稀疏信号,以减少计算和传输,对于资源有限的设备,例如无线传感器至关重要。由于信息信号通常是连续值的,因此压缩测量的数字通信需要量化。在这种量化的压缩感测(QC)上下文中,我们通过量化噪声的压缩测量来解决稀疏源的远程采集。我们提出了一个深层编码器架构,该结构由编码器深神经网络(DNN),量化器和解码器DNN组成,该结构实现了旨在最小化给定量化率的信号重构的均值误差的低复杂矢量量化。我们使用随机梯度下降和反向传播来设计一种监督学习方法来训练系统块。提出了克服消失梯度问题的策略。仿真结果表明,与标准QCS方法相比,提出的非词基于DNN的QCS方法具有较低的算法差异性能,算法复杂性较低,有利于具有大型信号的延迟敏感应用。

Sparse signals, encountered in many wireless and signal acquisition applications, can be acquired via compressed sensing (CS) to reduce computations and transmissions, crucial for resource-limited devices, e.g., wireless sensors. Since the information signals are often continuous-valued, digital communication of compressive measurements requires quantization. In such a quantized compressed sensing (QCS) context, we address remote acquisition of a sparse source through vector quantized noisy compressive measurements. We propose a deep encoder-decoder architecture, consisting of an encoder deep neural network (DNN), a quantizer, and a decoder DNN, that realizes low-complexity vector quantization aiming at minimizing the mean-square error of the signal reconstruction for a given quantization rate. We devise a supervised learning method using stochastic gradient descent and backpropagation to train the system blocks. Strategies to overcome the vanishing gradient problem are proposed. Simulation results show that the proposed non-iterative DNN-based QCS method achieves higher rate-distortion performance with lower algorithm complexity as compared to standard QCS methods, conducive to delay-sensitive applications with large-scale signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源