论文标题

$ j = 0 $和mordell的椭圆形曲线 - 韦尔组

Hashing to elliptic curves of $j=0$ and Mordell--Weil groups

论文作者

Koshelev, Dmitrii

论文摘要

考虑一个普通的椭圆曲线$ e_b \!:y^2 = x^3 -b $(of $ j $ -invariant $ 0 $)在有限字段$ \ mathbb {f} _ {\!q} $上本文试图解决构建有理$ \ mathbb {f} _ {\!q} $的问题 - 在直接产品的Kummer表面上曲线$ e_b \!\ times \! e_b^\ prime $,其中$ e_b^\ prime $是二次$ \ mathbb {f} _ {\!q} $ - $ e_b $的扭曲。更确切地说,我们建议在无限顺序$ \ mathbb {f} _ {\!q} $之间搜索这样的曲线 - $ j = 0 $的某些椭圆表面的部分,分析其mordell-weel group。不幸的是,我们证明它只是同构至$ \ m athbb {z}/3 $。

Consider an ordinary elliptic curve $E_b\!: y^2 = x^3 - b$ (of $j$-invariant $0$) over a finite field $\mathbb{F}_{\!q}$ such that $\sqrt[3]{b} \notin \mathbb{F}_{\!q}$. This article tries to resolve the problem of constructing a rational $\mathbb{F}_{\!q}$-curve on the Kummer surface of the direct product $E_b \!\times\! E_b^\prime$, where $E_b^\prime$ is the quadratic $\mathbb{F}_{\!q}$-twist of $E_b$. More precisely, we propose to search such a curve among infinite order $\mathbb{F}_{\!q}$-sections of some elliptic surface of $j=0$, analyzing its Mordell--Weil group. Unfortunately, we prove that it is just isomorphic to $\mathbb{Z}/3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源