论文标题

TG-GAN:具有深层生成模型的连续时间时间图生成

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models

论文作者

Zhang, Liming, Zhao, Liang, Qin, Shan, Pfoser, Dieter

论文摘要

目前正在积极开发的静态图的最新深层生成模型在分子设计等领域取得了显着成功。但是,许多现实世界中的问题都涉及时间图,其拓扑和属性值会随着时间的流逝而动态发展,包括诸如蛋白质折叠,人类移动网络和社交网络增长之类的重要应用。到目前为止,时间图的深层生成模型尚未充分理解,静态图的现有技术不足以适合时间图,因为它们不能1)编码和解码连续变化的图形拓扑,2)按时间表上执行有效性,或者通过时间约束,或3)确保无效的临时临时效率。为了应对这些挑战,我们提出了一个新模型,称为“时间图生成对抗网络”(TG-GAN),用于连续时空图生成,通过对截断的时间随机步行及其组成的深层生成过程进行建模。具体而言,我们首先提出了一种新型的时间图生成器,该发生器将共同模拟截断的边缘序列,时间预算和节点属性,并具有新型的激活函数,该功能可以在经常性架构下执行时间有效性约束。此外,还提出了一个新的时间图鉴别器,它结合了时间和节点编码在复发体系结构上的编码操作,以将生成的序列与由新开发的截断的暂时随机行走采样器采样的真实序列区分开。对合成数据集和现实世界数据集的广泛实验表明,TG-GAN在效率和有效性方面的比较方法显着超过了比较方法。

The recent deep generative models for static graphs that are now being actively developed have achieved significant success in areas such as molecule design. However, many real-world problems involve temporal graphs whose topology and attribute values evolve dynamically over time, including important applications such as protein folding, human mobility networks, and social network growth. As yet, deep generative models for temporal graphs are not yet well understood and existing techniques for static graphs are not adequate for temporal graphs since they cannot 1) encode and decode continuously-varying graph topology chronologically, 2) enforce validity via temporal constraints, or 3) ensure efficiency for information-lossless temporal resolution. To address these challenges, we propose a new model, called ``Temporal Graph Generative Adversarial Network'' (TG-GAN) for continuous-time temporal graph generation, by modeling the deep generative process for truncated temporal random walks and their compositions. Specifically, we first propose a novel temporal graph generator that jointly model truncated edge sequences, time budgets, and node attributes, with novel activation functions that enforce temporal validity constraints under recurrent architecture. In addition, a new temporal graph discriminator is proposed, which combines time and node encoding operations over a recurrent architecture to distinguish the generated sequences from the real ones sampled by a newly-developed truncated temporal random walk sampler. Extensive experiments on both synthetic and real-world datasets demonstrate TG-GAN significantly outperforms the comparison methods in efficiency and effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源