论文标题

AC-VRNN:用于多未实现轨迹预测的细心条件-VRNN

AC-VRNN: Attentive Conditional-VRNN for Multi-Future Trajectory Prediction

论文作者

Bertugli, Alessia, Calderara, Simone, Coscia, Pasquale, Ballan, Lamberto, Cucchiara, Rita

论文摘要

在拥挤的场景中预期人类运动对于开发智能运输系统,社交意识机器人和高级视频监视应用至关重要。该任务的一个关键组成部分由人类路径的固有多模式性质表示,这使得涉及人类互动时的社会可接受的多重未来。为此,我们提出了一种基于条件变化复发性神经网络(C-VRNN)的多未实现轨迹预测的生成架构。条件主要取决于先前的信念图,代表最有可能移动的方向,并迫使模型考虑过去观察到的动态在产生未来的位置时。人类相互作用是通过基于图的注意机制建模的,从而实现了对经常性估计的在线关注的隐藏状态改进。为了证实我们的模型,我们在公开可用的数据集上进行了广泛的实验(例如,ETH/UCY,Stanford Drone DataSet,Stats Sportvu NBA,Intersection无人机数据集和Trajnet ++),与几种正式的方法相比,在拥挤的场景中证明了其在拥挤的场景中的有效性。

Anticipating human motion in crowded scenarios is essential for developing intelligent transportation systems, social-aware robots and advanced video surveillance applications. A key component of this task is represented by the inherently multi-modal nature of human paths which makes socially acceptable multiple futures when human interactions are involved. To this end, we propose a generative architecture for multi-future trajectory predictions based on Conditional Variational Recurrent Neural Networks (C-VRNNs). Conditioning mainly relies on prior belief maps, representing most likely moving directions and forcing the model to consider past observed dynamics in generating future positions. Human interactions are modeled with a graph-based attention mechanism enabling an online attentive hidden state refinement of the recurrent estimation. To corroborate our model, we perform extensive experiments on publicly-available datasets (e.g., ETH/UCY, Stanford Drone Dataset, STATS SportVU NBA, Intersection Drone Dataset and TrajNet++) and demonstrate its effectiveness in crowded scenes compared to several state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源