论文标题

COVID-19的临床预测模型:系统研究

Clinical Predictive Models for COVID-19: Systematic Study

论文作者

Schwab, Patrick, Schütte, August DuMont, Dietz, Benedikt, Bauer, Stefan

论文摘要

2019年冠状病毒病(COVID-19)是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的快速出现的呼吸道疾病。由于SARS-COV-2的人类到人类的快速传播,许多医疗保健系统有可能超过其医疗保健能力,尤其是在SARS-COV-2测试,医院和重症监护室(ICU)床和机械通风机方面。预测算法可以通过确定最有可能接受SARS-COV-2阳性测试,住院或进入ICU的人来减轻医疗保健系统的压力。在这里,我们研究了使用机器学习并基于常规收集的临床数据来估算的临床预测模型,患者可能会接受阳性SARS-COV-2测试,需要住院或重症监护。为了评估模型的预测性能,我们对5644名患者的临床和血液分析数据进行了回顾性评估。我们的实验结果表明,我们的预测模型确定了(i)对SARS-COV-2 A先验测试阳性的患者,其灵敏度为75%(95%CI:67%:67%,81%)和49%(95%CI:46%,51%,51%),(II)SARS-COV-2阳性患者,需要0.92 AUC(95%CI)(95%CI)(95%CI)(95%)(95%CI:95%)。 SARS-COV-2阳性患者需要0.98 AUC(95%CI:0.95,1.00)。此外,我们确定哪些临床特征可以预测上述每个临床任务的程度。我们的结果表明,经常收集的临床数据培训的预测模型可用于预测COVID-19的临床途径,因此有助于为护理提供信息并确定资源的优先级。

Coronavirus Disease 2019 (COVID-19) is a rapidly emerging respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid human-to-human transmission of SARS-CoV-2, many healthcare systems are at risk of exceeding their healthcare capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds and mechanical ventilators. Predictive algorithms could potentially ease the strain on healthcare systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalised or admitted to the ICU. Here, we study clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test, require hospitalisation or intensive care. To evaluate the predictive performance of our models, we perform a retrospective evaluation on clinical and blood analysis data from a cohort of 5644 patients. Our experimental results indicate that our predictive models identify (i) patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI: 67%, 81%) and a specificity of 49% (95% CI: 46%, 51%), (ii) SARS-CoV-2 positive patients that require hospitalisation with 0.92 AUC (95% CI: 0.81, 0.98), and (iii) SARS-CoV-2 positive patients that require critical care with 0.98 AUC (95% CI: 0.95, 1.00). In addition, we determine which clinical features are predictive to what degree for each of the aforementioned clinical tasks. Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19, and therefore help inform care and prioritise resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源