论文标题

在机器学习辅助5G/6G网络中使用网络模拟器

Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

论文作者

Wilhelmi, Francesc, Carrascosa, Marc, Cano, Cristina, Jonsson, Anders, Ram, Vishnu, Bellalta, Boris

论文摘要

毫无疑问,机器学习(ML)将成为未来通信的重要驱动力,因为它可以预见到复杂问题时的性能。但是,ML在网络系统中的应用引起了网络运营商和其他利益相关者之间的关注,尤其是在可信度和可靠性方面。在本文中,我们设计了网络模拟器在弥合ML和通信系统之间差距的作用。特别是,在将ML感知网络中的模拟器集成在应用于手术网络之前,在ML感知网络中进行了培训,测试和验证ML模型的架构集成。此外,我们提供了有关此整合带来的主要挑战的见解,然后给出提示,讨论如何克服它们。最后,我们通过概念验证测试床的实现将网络模拟器集成到ML辅助通信中。

Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源