论文标题

印度Covid-19的动力建模和分析

Dynamical modelling and analysis of COVID-19 in India

论文作者

Gopal, R., Chandrasekar, V. K., Lakshmanan, M.

论文摘要

我们认为,在中国武汉市冠状病毒爆发后,共同-19在印度的大流行传播。我们通过在易感性(S),暴露(E),感染(I)和删除(R)种群模型的帮助下,通过在流行病的早期使用官方报道的数据来估计印度最初感染Covid-19的传播率。进行数值分析和模型验证以通过有关感染人数的官方公共信息来校准系统参数,然后评估可能适用于印度的几种Covid -19场景。我们的发现提供了对不久的将来疾病发生的估计,也证明了政府和个人努力控制大流行有关的关键情况的重要性。我们还特别强调了遏制过程中的个体反应。

We consider the pandemic spreading of COVID-19 in India after the outbreak of the coronavirus in Wuhan city, China. We estimate the transmission rate of the initial infecting individuals of COVID-19 in India by using the officially reported data at the early stage of the epidemic with the help of Susceptible (S), Exposed (E), Infected (I), and Removed (R) population model, the so-called SEIR dynamical model. Numerical analysis and model verification are performed to calibrate the system parameters with official public information about the number of people infected, and then to evaluate several COVID -19 scenarios potentially applicable to India. Our findings provide an estimation of disease occurrence in the near future and also demonstrate the importance of governmental and individual efforts to control the effects and time of the pandemic-related critical situations. We also give special emphasis to individual reactions in the containment process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源