论文标题
双重学习:理论研究和算法扩展
Dual Learning: Theoretical Study and an Algorithmic Extension
论文作者
论文摘要
双重学习已成功应用于许多机器学习应用程序,包括机器翻译,图像到图像转换等。双重学习的高级思想非常直观:如果我们将$ x $从一个域映射到另一个域,然后将其映射回去,我们应该恢复原始$ x $。尽管其有效性已得到经验验证,但对双重学习的理论理解仍然非常有限。在本文中,我们的目的是了解双重学习有效的原因。基于我们的理论分析,我们通过引入更多相关映射并提出多步双重学习,进一步扩展了双重学习,我们在其中利用来自其他领域的反馈信号来提高映射的质量。我们证明,多步双学习可以在轻度条件下提高标准双学习的表现。 WMT 14英语的实验$ \ leftrightArrow $ derman and Multiunenglish $ \ leftrightArrow $法语翻译验证了我们关于双重学习的理论发现,以及有关英语,法语和西班牙语的翻译结果,证明了多步双学习的有效性。
Dual learning has been successfully applied in many machine learning applications including machine translation, image-to-image transformation, etc. The high-level idea of dual learning is very intuitive: if we map an $x$ from one domain to another and then map it back, we should recover the original $x$. Although its effectiveness has been empirically verified, theoretical understanding of dual learning is still very limited. In this paper, we aim at understanding why and when dual learning works. Based on our theoretical analysis, we further extend dual learning by introducing more related mappings and propose multi-step dual learning, in which we leverage feedback signals from additional domains to improve the qualities of the mappings. We prove that multi-step dual learn-ing can boost the performance of standard dual learning under mild conditions. Experiments on WMT 14 English$\leftrightarrow$German and MultiUNEnglish$\leftrightarrow$French translations verify our theoretical findings on dual learning, and the results on the translations among English, French, and Spanish of MultiUN demonstrate the effectiveness of multi-step dual learning.