论文标题
比较紧凑的球形径向基础函数和插值移动最小二乘无网状的插值,以在地球和地球物理学中进行重力数据插值
Comparison between compactly-supported spherical radial basis functions and interpolating moving least squares meshless interpolants for gravity data interpolation in geodesy and geophysics
论文作者
论文摘要
本文的重点是比较两个重要的无网插剂在重力加速插值方面的效率。紧凑的支撑球形径向基函数和插值运动最小二乘用于插值南部非洲的实际重力加速度。将插值值与通过观察收集的实际值进行比较。对插值和实际值之间差异的标准偏差进行了彻底的分析。三种不同类别的球形径向函数 - 奇异性和对数和对数和四种不同类型的基础功能,用于插值运动最小二乘接近平面,二次,二次,立方体和球形谐波。结果表明,与插值移动最小二乘方案相比,在这个特定的问题中,紧凑型球形径向基函数的速度更快,能够达到更高的精度。
The present paper is focused on the comparison of the efficiency of two important meshless interpolants for gravity acceleration interpolation. Compactly-supported spherical radial basis functions and interpolating moving least squares are used to interpolate actual gravity accelerations in southern Africa. Interpolated values are compared with actual values, gathered by observation. A thorough analysis is presented for the standard deviation of the differences between interpolated and actual values. Three different class of spherical radial basis functions-Poisson, singularity, and logarithmic-and four different type of basis functions for interpolating moving least squares approach-planar, quadratic, cubic, and spherical harmonics-are used. It is shown that in this particular problem compactly-supported spherical radial basis functions are faster and capable of achieving higher accuracies, compared to interpolating moving least squares scheme.