论文标题
KD-STR:一种时空数据降低和建模的方法
kD-STR: A Method for Spatio-Temporal Data Reduction and Modelling
论文作者
论文摘要
从时空数据集中分析和学习是许多领域的重要过程,包括运输,医疗保健和气象。特别是,传感器在环境中收集的数据使我们能够理解和建模环境中作用的过程。最近,收集的时空数据的量显着增加,这给数据科学家带来了一些挑战。因此,需要方法来减少需要处理需要处理的数据数量,以便从时空数据集中进行分析和学习。在本文中,我们介绍了用于减少用于存储数据集的数据的数量,同时在还原数据集中启用多种类型的分析,以减少用于存储数据集的数据量的K维时空减少方法(KD-STR)。 KD-STR使用分层分区来找到相似实例的时空区域,并模拟每个区域内的实例以汇总数据集。我们证明了KD-STR的一般性,其中3个数据集表现出不同的时空特征,并为一系列数据建模技术提供了结果。最后,我们将KD-STR与减少时空数据量的其他技术进行了比较。我们的结果表明,KD-STR可有效地减少时空数据和对表现出不同属性的数据集的概括。
Analysing and learning from spatio-temporal datasets is an important process in many domains, including transportation, healthcare and meteorology. In particular, data collected by sensors in the environment allows us to understand and model the processes acting within the environment. Recently, the volume of spatio-temporal data collected has increased significantly, presenting several challenges for data scientists. Methods are therefore needed to reduce the quantity of data that needs to be processed in order to analyse and learn from spatio-temporal datasets. In this paper, we present the k-Dimensional Spatio-Temporal Reduction method (kD-STR) for reducing the quantity of data used to store a dataset whilst enabling multiple types of analysis on the reduced dataset. kD-STR uses hierarchical partitioning to find spatio-temporal regions of similar instances and models the instances within each region to summarise the dataset. We demonstrate the generality of kD-STR with 3 datasets exhibiting different spatio-temporal characteristics and present results for a range of data modelling techniques. Finally, we compare kD-STR with other techniques for reducing the volume of spatio-temporal data. Our results demonstrate that kD-STR is effective in reducing spatio-temporal data and generalises to datasets that exhibit different properties.