论文标题

单一参与结构连通性矩阵的参与者分类的准确性比在MRI中的自闭症功能更高

Single-participant structural connectivity matrices lead to greater accuracy in classification of participants than function in autism in MRI

论文作者

Leming, Matthew, Baron-Cohen, Simon, Suckling, John

论文摘要

在这项工作中,我们引入了一种从T1加权MRI估计的灰色 - 含量体积的区域直方图中得出对称连通性矩阵的技术。然后,我们通过将连接矩阵输入到卷积神经网络(CNN)中来验证了该技术,以在自闭症和年龄,运动和颅内和内数量的参与者之间进行分类,这些控制来自六个不同的数据库(29,288个总连接,平均年龄= 30.72,范围为0.42-78.00.00,包括1555555555555.00555555。我们使用fMRI连接矩阵以及灰质 - 毛线量的单变量估计值将此方法与相同参与者的类似分类进行了比较。我们在输出类激活图上进一步应用了图理论指标,以识别CNN优先用于进行分类的矩阵的区域,特别是集中在集线器上。我们的结果仅通过结构连接性进行分类时的AUROC为0.7298(69.71%的精度),仅通过功能连接性进行分类时,0.6964(67.72%的精度)和0.7037(66.43%的准确性)在单变量灰色物质上进行分类时。结构和功能连接性的结合率为0.7354(精度为69.40%)。班级激活图的图分析显示,功能输入没有可区分的网络模式,但确实揭示了双侧Heschl的回和上层的局部差异,用于结构连接性。这项工作提供了一种简单的特征提取方法,用于将大量结构MRIS输入机器学习模型。

In this work, we introduce a technique of deriving symmetric connectivity matrices from regional histograms of grey-matter volume estimated from T1-weighted MRIs. We then validated the technique by inputting the connectivity matrices into a convolutional neural network (CNN) to classify between participants with autism and age-, motion-, and intracranial-volume-matched controls from six different databases (29,288 total connectomes, mean age = 30.72, range 0.42-78.00, including 1555 subjects with autism). We compared this method to similar classifications of the same participants using fMRI connectivity matrices as well as univariate estimates of grey-matter volumes. We further applied graph-theoretical metrics on output class activation maps to identify areas of the matrices that the CNN preferentially used to make the classification, focusing particularly on hubs. Our results gave AUROCs of 0.7298 (69.71% accuracy) when classifying by only structural connectivity, 0.6964 (67.72% accuracy) when classifying by only functional connectivity, and 0.7037 (66.43% accuracy) when classifying by univariate grey matter volumes. Combining structural and functional connectivities gave an AUROC of 0.7354 (69.40% accuracy). Graph analysis of class activation maps revealed no distinguishable network patterns for functional inputs, but did reveal localized differences between groups in bilateral Heschl's gyrus and upper vermis for structural connectivity. This work provides a simple means of feature extraction for inputting large numbers of structural MRIs into machine learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源