论文标题
平衡中央自旋系统中的相干和耗散动力
Balancing coherent and dissipative dynamics in a central-spin system
论文作者
论文摘要
开放量子系统达到稳态(稳态时间)所需的平均时间通常是通过连贯和不连贯(耗散)动态的竞争来确定的。在这里,我们研究了无处不在的中央旋转系统的竞争,该竞争对应于与Ancilla旋转并经历散发性自旋松弛的“中央”自旋1/2相对应。 Ancilla系统可以描述$ n $ spins-1/2或等效地是一个长度$ i = n/2 $的单个大型旋转。根据通用曲线,我们从耗散率方面找到了稳态时间的精确分析表达式,从而在耗散速率的最佳值下产生最小的(最佳)稳态时间。由于集体增强效果,优化的稳态时间仅随着$ n = 2i $的增加而增长,这表明系统大小可以在稳态时间内仅带有适度的成本而大大增长。这项工作直接应用于量子点中自旋Qubit的快速初始化或与供体杂质,动态核旋转极化方案的限制,并可能为量子退火中错误校正方案的益处提供关键直觉。
The average time required for an open quantum system to reach a steady state (the steady-state time) is generally determined through a competition of coherent and incoherent (dissipative) dynamics. Here, we study this competition for a ubiquitous central-spin system, corresponding to a `central' spin-1/2 coherently coupled to ancilla spins and undergoing dissipative spin relaxation. The ancilla system can describe $N$ spins-1/2 or, equivalently, a single large spin of length $I=N/2$. We find exact analytical expressions for the steady-state time in terms of the dissipation rate, resulting in a minimal (optimal) steady-state time at an optimal value of the dissipation rate, according to a universal curve. Due to a collective-enhancement effect, the optimized steady-state time grows only logarithmically with increasing $N=2I$, demonstrating that the system size can be grown substantially with only a moderate cost in steady-state time. This work has direct applications to the rapid initialization of spin qubits in quantum dots or bound to donor impurities, to dynamic nuclear-spin polarization protocols, and may provide key intuition for the benefits of error-correction protocols in quantum annealing.