论文标题
来自Sentinel-2图像的本地气候区域分类的多级特征基于Fusion Fusion CNN:SO2SAT LCZ42数据集的基准测试结果
Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset
论文作者
论文摘要
作为城市形式和功能的独特分类方案,本地气候区(LCZ)系统为与城市环境有关的任何研究提供了重要的一般信息,尤其是在大规模上。基于数据的分类方法是LCZ大规模映射和监视的关键。即使先进的卷积神经网络(CNN)继续为各种计算机视觉任务推动前沿,但基于深度学习的方法的潜力尚未得到充分探索。原因之一是已发表的研究基于不同的数据集,通常是在区域规模上,这使得无法公平,始终如一地比较不同CNN对于实际情况的潜力。这项研究基于专门用于LCZ分类的大SO2SAT LCZ42基准数据集。使用此数据集,我们研究了一系列不同尺寸的CNN。此外,我们提出了一个CNN,以对Sen2LCZ-NET的Sentinel-2图像进行分类。使用此基础网络,我们建议使用扩展的SEN2LCZ-NET-MF融合多级功能。借助此提出的简单网络体系结构和高度竞争性的基准数据集,我们获得的结果比最先进的CNN获得的结果更好,同时需要更少的层和参数的计算。提出了完全看不见的区域的大规模LCZ分类示例,证明了我们提出的SEN2LCZ-NET-MF以及SO2SAT LCZ42数据集的潜力。我们还深入研究了网络深度和宽度的影响以及针对SEN2LCZ-NET-MF做出的设计选择的有效性。我们的工作将为LCZ分类和其他城市土地覆盖土地使用分类的未来基于CNN的算法开发提供重要的基准。
As a unique classification scheme for urban forms and functions, the local climate zone (LCZ) system provides essential general information for any studies related to urban environments, especially on a large scale. Remote sensing data-based classification approaches are the key to large-scale mapping and monitoring of LCZs. The potential of deep learning-based approaches is not yet fully explored, even though advanced convolutional neural networks (CNNs) continue to push the frontiers for various computer vision tasks. One reason is that published studies are based on different datasets, usually at a regional scale, which makes it impossible to fairly and consistently compare the potential of different CNNs for real-world scenarios. This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using this dataset, we studied a range of CNNs of varying sizes. In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly competitive benchmark dataset, we obtain results that are better than those obtained by the state-of-the-art CNNs, while requiring less computation with fewer layers and parameters. Large-scale LCZ classification examples of completely unseen areas are presented, demonstrating the potential of our proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also intensively investigated the influence of network depth and width and the effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification.