论文标题

逻辑推断与比较和广义量词

Logical Inferences with Comparatives and Generalized Quantifiers

论文作者

Haruta, Izumi, Mineshima, Koji, Bekki, Daisuke

论文摘要

比较构造对自然语言推论(NLI)提出了挑战,这是确定文本是否需要假设的任务。比较在结构上是复杂的,因为它们与其他语言现象相互作用,例如量词,数字和词汇反义词。在正式的语义中,使用学位概念进行了丰富的比较和渐变表达式工作。但是,用于比较的逻辑推理系统尚未充分开发用于NLI任务。在本文中,我们提出了一种组成语义,该语义通过组合性分类语法(CCG)解析器绘制了英语中的各种比较构造,并将其与基于自动定理证明的推理系统相结合。我们在三个NLI数据集上评估了我们的系统,该数据集包含复杂的逻辑推断,并具有比较,广义量词和数字。我们表明,该系统的表现优于以前的基于逻辑的系统以及最新的基于深度学习的模型。

Comparative constructions pose a challenge in Natural Language Inference (NLI), which is the task of determining whether a text entails a hypothesis. Comparatives are structurally complex in that they interact with other linguistic phenomena such as quantifiers, numerals, and lexical antonyms. In formal semantics, there is a rich body of work on comparatives and gradable expressions using the notion of degree. However, a logical inference system for comparatives has not been sufficiently developed for use in the NLI task. In this paper, we present a compositional semantics that maps various comparative constructions in English to semantic representations via Combinatory Categorial Grammar (CCG) parsers and combine it with an inference system based on automated theorem proving. We evaluate our system on three NLI datasets that contain complex logical inferences with comparatives, generalized quantifiers, and numerals. We show that the system outperforms previous logic-based systems as well as recent deep learning-based models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源