论文标题

基于机器学习的矢量涡流束分类

Machine learning-based classification of vector vortex beams

论文作者

Giordani, Taira, Suprano, Alessia, Polino, Emanuele, Acanfora, Francesca, Innocenti, Luca, Ferraro, Alessandro, Paternostro, Mauro, Spagnolo, Nicolò, Sciarrino, Fabio

论文摘要

结构化的光吸引了其在古典和量子光学元件中的不同应用。所谓的矢量涡流梁在两种情况下都在两种情况下都显示出特殊的特性,这是由于光学偏振和轨道角动量之间的非平凡相关性。在这里,我们展示了一种新的,灵活的实验方法,以分类涡流矢量束。我们首先描述一个平台,用于生成受光子量子步行启发的任意复合矢量涡流梁。然后,我们利用最近的机器学习方法(即卷积神经网络和主要成分分析)来识别和分类特定的极化模式。我们的研究表明,使用基于机器学习的协议来构建和表征量子协议的高维资源来产生的显着优势。

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the non-trivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods -- namely convolutional neural networks and principal component analysis -- to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源