论文标题

使用图形卷积网络适应部分域

Partial Domain Adaptation Using Graph Convolutional Networks

论文作者

Yang, Seunghan, Kim, Youngeun, Jung, Dongki, Kim, Changick

论文摘要

部分域适应(PDA),其中我们假设目标标签空间包含在源标签空间中,是标准域适应的一般版本。由于目标标签空间尚不清楚,因此PDA的主要挑战是减少不属于目标标签空间的无关源样本的学习影响。尽管现有的部分域适应方法有效地降低了异常值的重要性,但它们并不考虑每个域的数据结构,也不直接使同一类的特征分布在源和目标域中的特征分布对齐,这可能会导致类别级别分布的错误对准。为了克服这些问题,我们提出了一个图形部分域适应(GPDA)网络,该网络利用图形卷积网络共同考虑数据结构和每个类的特征分布。具体而言,我们提出了一个标签关系图,以使同一类别在两个域中的分布对齐,并从标签关系图引入学习网络的移动平均质心分离。我们证明,考虑到每个类别的数据结构和分布对PDA有效,而我们的GPDA网络在数字和Office-31数据集上实现了最先进的性能。

Partial domain adaptation (PDA), in which we assume the target label space is included in the source label space, is a general version of standard domain adaptation. Since the target label space is unknown, the main challenge of PDA is to reduce the learning impact of irrelevant source samples, named outliers, which do not belong to the target label space. Although existing partial domain adaptation methods effectively down-weigh outliers' importance, they do not consider data structure of each domain and do not directly align the feature distributions of the same class in the source and target domains, which may lead to misalignment of category-level distributions. To overcome these problems, we propose a graph partial domain adaptation (GPDA) network, which exploits Graph Convolutional Networks for jointly considering data structure and the feature distribution of each class. Specifically, we propose a label relational graph to align the distributions of the same category in two domains and introduce moving average centroid separation for learning networks from the label relational graph. We demonstrate that considering data structure and the distribution of each category is effective for PDA and our GPDA network achieves state-of-the-art performance on the Digit and Office-31 datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源