论文标题
$ b $ - 理想几乎是pogorelov的界限
$B$-rigidity of ideal almost Pogorelov polytopes
论文作者
论文摘要
复曲面拓扑分配给每个$ n $二维的组合简单凸polytope $ p $带$ m $ facets a $(m+n)$ - 尺寸瞬间瞬间 - 角度歧管$ \ nathcal {z} _p $,用紧凑型t^m $ t^m $ \ nathcal type typer typer typer of $ P $。一个简单的$ n $ - polytope称为$ b $ -rigid,如果有任何分级环$ h^*的同构(\ Mathcal {z} _p,\ Mathbb z)= h^*(\ Mathcal {z} _q,_q,_q,\ athbb z)$ n $ n $ -polytoy $ quins $ quins $ quins $ q $ q $ q $ q $ q $ q&q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $ q $理想的几乎是Pogorelov Polytope是通过切断Lobachevsky(双曲线)空间$ \ Mathbb l^3 $的理想右角polytope的所有理想顶点获得的组合$ 3 $ polytope。这些多面体正是从任何(不一定简单的凸面$ 3 $ - 多层)中获得的多型,通过切断所有顶点,然后切断所有“旧”边缘。双重多层的边界是旧多层边界(以及其双重多层)边界的重中性细分。我们证明,任何理想的几乎是pogorelov polytope都是$ b $ rigid。这产生了三个共同体的僵化家族,这些家族的歧管属于理想的几乎几乎是pogorelov歧管:瞬间角歧管,规范的$ 6 $维二维准歧管和规范的$ 3 $尺寸的小型封面,这些封面是“来自线性模型的回扣”。
Toric topology assigns to each $n$-dimensional combinatorial simple convex polytope $P$ with $m$ facets an $(m+n)$-dimensional moment-angle manifold $\mathcal{Z}_P$ with an action of a compact torus $T^m$ such that $\mathcal{Z}_P/T^m$ is a convex polytope of combinatorial type $P$. A simple $n$-polytope is called $B$-rigid, if any isomorphism of graded rings $H^*(\mathcal{Z}_P,\mathbb Z)= H^*(\mathcal{Z}_Q,\mathbb Z)$ for a simple $n$-polytope $Q$ implies that $P$ and $Q$ are combinatorially equivalent. An ideal almost Pogorelov polytope is a combinatorial $3$-polytope obtained by cutting off all the ideal vertices of an ideal right-angled polytope in the Lobachevsky (hyperbolic) space $\mathbb L^3$. These polytopes are exactly the polytopes obtained from any, not necessarily simple, convex $3$-polytopes by cutting off all the vertices followed by cutting off all the "old" edges. The boundary of the dual polytope is the barycentric subdivision of the boundary of the old polytope (and also of its dual polytope). We prove that any ideal almost Pogorelov polytope is $B$-rigid. This produces three cohomologically rigid families of manifolds over ideal almost Pogorelov manifolds: moment-angle manifolds, canonical $6$-dimensional quasitoric manifolds and canonical $3$-dimensional small covers, which are "pullbacks from the linear model".