论文标题

在$ \ mathbb r^2 $中,曲率的流量的古老解决方案

Ancient solutions for flow by powers of the curvature in $\mathbb R^2$

论文作者

Bourni, Theodora, Clutterbuck, Julie, Nguyen, Xuan Hien, Stancu, Alina, Wei, Guofang, Wheeler, Valentina-Mira

论文摘要

我们构建了$κ^α$的新型嵌入式凸的古老解决方案,$ \ Mathbb r^2 $,$α\ in(\ frac12,1)$,位于两个平行线之间。使用此解决方案,我们将$κ^α$的所有凸旧解决方案分类为$ \ Mathbb r^2 $,以$α\ in(\ frac23,1)$。此外,我们表明,$κ^α$的任何非紧凑型凸凸的古老解决方案$ \ mathbb r^2 $,$α\ in(\ frac12,1)$都必须是翻译解决方案。

We construct a new compact convex embedded ancient solution of the $κ^α$ flow in $\mathbb R^2$, $α\in(\frac12,1)$ that lies between two parallel lines. Using this solution we classify all convex ancient solutions of the $κ^α$ flow in $\mathbb R^2$, for $α\in(\frac23,1)$. Moreover, we show that any non-compact convex embedded ancient solution of the $κ^α$ flow in $\mathbb R^2$, $α\in(\frac12,1)$ must be a translating solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源