论文标题

通信网络的输入 - 动力分布式算法

Input-Dynamic Distributed Algorithms for Communication Networks

论文作者

Foerster, Klaus-Tycho, Korhonen, Janne H., Paz, Ami, Rybicki, Joel, Schmid, Stefan

论文摘要

考虑一个分布式任务,其中通信网络是固定的,但是给出的分布式系统节点的本地输入可能会随着时间而变化。在这项工作中,我们探讨了以下问题:如果某些本地输入更改,是否可以以动态和分布式的方式有效地更新现有的解决方案? 为了解决这个问题,我们定义了批处理动态通讯模型,在该模型中,我们获得了带宽限制的通信网络和动态边缘标签定义了问题输入。任务是在批处理更改下的标记图上维护图形问题的解决方案。我们调查,当一批$α$边缘标签更改到达时, - 我们需要更新现有解决方案的$α$的函数多少时间,并且 - 节点必须在批处理之间保持本地内存的数量,以便快速更新解决方案。 我们的工作为输入 - 动态分布式网络算法的理论奠定了基础。我们给出了该模型中复杂性景观的一般图片,即为混凝土问题设计通用算法和算法,并为下限提供了一般框架。特别是,对于两个选定的对比问题,我们得出了非平凡的上限:维持最小的跨越树和检测集团。

Consider a distributed task where the communication network is fixed but the local inputs given to the nodes of the distributed system may change over time. In this work, we explore the following question: if some of the local inputs change, can an existing solution be updated efficiently, in a dynamic and distributed manner? To address this question, we define the batch dynamic CONGEST model in which we are given a bandwidth-limited communication network and a dynamic edge labelling defines the problem input. The task is to maintain a solution to a graph problem on the labeled graph under batch changes. We investigate, when a batch of $α$ edge label changes arrive, -- how much time as a function of $α$ we need to update an existing solution, and -- how much information the nodes have to keep in local memory between batches in order to update the solution quickly. Our work lays the foundations for the theory of input-dynamic distributed network algorithms. We give a general picture of the complexity landscape in this model, design both universal algorithms and algorithms for concrete problems, and present a general framework for lower bounds. In particular, we derive non-trivial upper bounds for two selected, contrasting problems: maintaining a minimum spanning tree and detecting cliques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源