论文标题
通过多点布朗桥的稀疏采样时间序列的随机插值
Stochastic interpolation of sparsely sampled time series via multi-point fractional Brownian bridges
论文作者
论文摘要
我们提出并测试一种通过具有广泛空间和/或时间尺度的随机过程插入稀疏采样信号的方法。为此,我们将分数布朗尼桥的概念扩展为具有给定比例(Hurst)指数$ h $的分数布朗尼运动,并带有规定的起点和终点,到具有任意数量的中间和非均等点的桥梁过程。确定hurst指数的最佳值,$ h_ {opt} $,适合插入稀疏信号,是我们方法的非常重要的一步。我们证明了我们方法对高雷诺数流量中流体湍流信号的有效性,并讨论了信号的非相似特征的含义。此处介绍的方法可能会在几个物理问题中发挥作用,包括天体物理学,粒子跟踪,替代数据的特定剪裁以及自然和社会科学领域。
We propose and test a method to interpolate sparsely sampled signals by a stochastic process with a broad range of spatial and/or temporal scales. To this end, we extend the notion of a fractional Brownian bridge, defined as fractional Brownian motion with a given scaling (Hurst) exponent $H$ and with prescribed start and end points, to a bridge process with an arbitrary number of intermediate and non-equidistant points. Determining the optimal value of the Hurst exponent, $H_{opt}$, appropriate to interpolate the sparse signal, is a very important step of our method. We demonstrate the validity of our method on a signal from fluid turbulence in a high Reynolds number flow and discuss the implications of the non-self-similar character of the signal. The method introduced here could be instrumental in several physical problems, including astrophysics, particle tracking, specific tailoring of surrogate data, as well as in domains of natural and social sciences.