论文标题

通过对抗性特征匹配超级分辨率,增强感知损失

Enhancing Perceptual Loss with Adversarial Feature Matching for Super-Resolution

论文作者

Tej, Akella Ravi, Halder, Shirsendu Sukanta, Shandeelya, Arunav Pratap, Pankajakshan, Vinod

论文摘要

单图像超分辨率(SISR)是一个不确定数量的有效解决方案的问题。通过神经网络解决此问题将需要获得丰富的经验,要么以自然图像进行大型培训,要么是来自另一个预训练的网络的凝结代表。属于后一种类别的知觉损失功能在SISR和其他几个计算机视觉任务中取得了突破性的成功。尽管感知损失在照片真实图像的产生中起着核心作用,但它也会在超级分辨的输出中产生不希望的模式伪像。在本文中,我们表明,这些模式伪像的根本原因可以追溯到感知损失的训练预训练目标与超分辨率目标之间的不匹配。为了解决这个问题,我们建议使用新颖的内容损失函数来增强现有的感知损失公式,该功能使用歧视网络的潜在特征来过滤几个级别的对抗性相似性的不良伪像。此外,我们的修改对对抗训练中的非凸优化具有稳定的作用。根据广泛的人类评估研究,在对客观评估指标进行测试时,提出的方法基于广泛的人类评估研究和有能力的重建保真度提供了显着的感知质量。

Single image super-resolution (SISR) is an ill-posed problem with an indeterminate number of valid solutions. Solving this problem with neural networks would require access to extensive experience, either presented as a large training set over natural images or a condensed representation from another pre-trained network. Perceptual loss functions, which belong to the latter category, have achieved breakthrough success in SISR and several other computer vision tasks. While perceptual loss plays a central role in the generation of photo-realistic images, it also produces undesired pattern artifacts in the super-resolved outputs. In this paper, we show that the root cause of these pattern artifacts can be traced back to a mismatch between the pre-training objective of perceptual loss and the super-resolution objective. To address this issue, we propose to augment the existing perceptual loss formulation with a novel content loss function that uses the latent features of a discriminator network to filter the unwanted artifacts across several levels of adversarial similarity. Further, our modification has a stabilizing effect on non-convex optimization in adversarial training. The proposed approach offers notable gains in perceptual quality based on an extensive human evaluation study and a competent reconstruction fidelity when tested on objective evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源