论文标题

深神经卷积网络眼底面图像分割的凸面形状

Convex Shape Prior for Deep Neural Convolution Network based Eye Fundus Images Segmentation

论文作者

Liu, Jun, Tai, Xue-Cheng, Luo, Shousheng

论文摘要

凸形形状(CS)是眼睛眼底图像中视盘和杯子分割的常见先验。设计适当的技术以表示凸形很重要。到目前为止,保证来自深神经卷积网络(DCNN)的输出对象是凸形的问题。在这项工作中,我们提出了一种可以轻松地集成到常用的DCNN中进行图像分割的技术,并确保输出是凸形的。此方法是灵活的,可以处理多个对象,并允许某些对象为凸。我们的方法基于DCNN中Sigmoid激活函数的双重表示。在双重空间中,可以通过对形状的二进制表示的简单二次约束来确保先验的凸形。此外,我们的方法还可以使用软阈值动力学(STD)方法整合空间正则化和其他一些形状。正则化可以使分割对象的边界曲线同时平滑和凸。我们设计了一种非常稳定的活动集投影算法来数字求解我们的模型。该算法可以形成一个称为CS-STD的新播放DCNN层,其输出必须是凸对象的几乎二进制分割。在CS-STD块中,可以在训练和预测过程中传播凸面信息以引导DCNN的前向和向后传播。作为一个应用程序示例,我们将流行的DeepLabV3+作为骨干网络应用于视网膜底面图像的细分。几个公共数据集的实验结果表明,我们的方法是有效的,并且胜过经典的DCNN分割方法。

Convex Shapes (CS) are common priors for optic disc and cup segmentation in eye fundus images. It is important to design proper techniques to represent convex shapes. So far, it is still a problem to guarantee that the output objects from a Deep Neural Convolution Networks (DCNN) are convex shapes. In this work, we propose a technique which can be easily integrated into the commonly used DCNNs for image segmentation and guarantee that outputs are convex shapes. This method is flexible and it can handle multiple objects and allow some of the objects to be convex. Our method is based on the dual representation of the sigmoid activation function in DCNNs. In the dual space, the convex shape prior can be guaranteed by a simple quadratic constraint on a binary representation of the shapes. Moreover, our method can also integrate spatial regularization and some other shape prior using a soft thresholding dynamics (STD) method. The regularization can make the boundary curves of the segmentation objects to be simultaneously smooth and convex. We design a very stable active set projection algorithm to numerically solve our model. This algorithm can form a new plug-and-play DCNN layer called CS-STD whose outputs must be a nearly binary segmentation of convex objects. In the CS-STD block, the convexity information can be propagated to guide the DCNN in both forward and backward propagation during training and prediction process. As an application example, we apply the convexity prior layer to the retinal fundus images segmentation by taking the popular DeepLabV3+ as a backbone network. Experimental results on several public datasets show that our method is efficient and outperforms the classical DCNN segmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源