论文标题

二维WS $ _2 $中的替代点缺陷如何引起电荷定位,旋转轨道分裂和应变

How Substitutional Point Defects in Two-Dimensional WS$_2$ Induce Charge Localization, Spin-Orbit Splitting, and Strain

论文作者

Schuler, Bruno, Lee, Jun-Ho, Kastl, Christoph, Cochrane, Katherine A., Chen, Christopher T., Refaely-Abramson, Sivan, Yuan, Shengjun, van Veen, Edo, Roldán, Rafael, Borys, Nicholas J., Koch, Roland J., Aloni, Shaul, Schwartzberg, Adam M., Ogletree, D. Frank, Neaton, Jeffrey B., Weber-Bargioni, Alexander

论文摘要

半导体材料中杂质浓度的控制对于设备技术至关重要。由于它们的内在限制,二维半导体(例如过渡金属二核苷)(TMDS)的性质比传统的散装材料对缺陷更敏感。 TMD的技术采用取决于缓解有害缺陷和功能性外源原子的指导性纳入。迈向杂质控制的第一步是鉴定缺陷和评估其电子特性。在这里,我们介绍了通过化学蒸气沉积(CVD)使用扫描隧道显微镜/光谱,共同提示非接触性原子显微镜,基尔维蛋白探针探针探针探针概率,浓度函数理论,紧密构成的,对单层缺陷(WS $ _2 $)中的点缺陷(WS $ _2 $)进行了全面研究。我们观察四个不同的替代缺陷:铬(Cr $ _ {\ text {w}} $)和钼(Mo $ $ _ {\ text {w}} $)在一个网站上,在底层和顶部的sulfur sites中的氧气,氧气的氧气和上层和tobled(o $ _ $ _ {o $ _ { (CD)。它们的电子指纹明确证实了缺陷分配,并揭示了差距缺陷状态的存在或不存在。如下所述,电荷定位,旋转轨道耦合和应变的重要作用是在WS $ _2 $中观察到的深缺陷状态的形成,这将指导有针对性的缺陷工程和TMD的掺杂的未来努力。

Control of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms. The first step towards impurity control is the identification of defects and assessment of their electronic properties. Here, we present a comprehensive study of point defects in monolayer tungsten disulfide (WS$_2$) grown by chemical vapor deposition (CVD) using scanning tunneling microscopy/spectroscopy, CO-tip noncontact atomic force microscopy, Kelvin probe force spectroscopy, density functional theory, and tight-binding calculations. We observe four different substitutional defects: chromium (Cr$_{\text{W}}$) and molybdenum (Mo$_{\text{W}}$) at a tungsten site, oxygen at sulfur sites in both bottom and top layers (O$_{\text{S}}$ top/bottom), as well as two negatively charged defects (CDs). Their electronic fingerprints unambiguously corroborate the defect assignment and reveal the presence or absence of in-gap defect states. The important role of charge localization, spin-orbit coupling, and strain for the formation of deep defect states observed at substitutional defects in WS$_2$ as reported here will guide future efforts of targeted defect engineering and doping of TMDs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源