论文标题
具有许多潜在变量的模型的快速准确的变异推断
Fast and Accurate Variational Inference for Models with Many Latent Variables
论文作者
论文摘要
具有大量潜在变量的模型通常用于在大型或复杂数据中充分利用这些信息。但是,使用标准方法很难估算它们,而变异推理方法是一种流行的选择。这些成功的关键是选择对目标密度的近似值,该目标密度是使用优化方法准确,可拖动且可以快速校准的。当有许多潜在变量时,大多数现有选择可能是不准确或慢速校准。在这里,我们提出了一个可拖动的变分近似家庭,该家族更准确,更快地校准了这种情况。它结合了参数后验的简约参数近似,并结合了潜在变量的确切条件后验。我们得出了一个简化的表达式,用于变异下限的重新参数化梯度,这是用于实施变分估计的有效优化算法的主要成分。为此,只需要能够从潜在变量的条件后部进行精确或大约生成的能力,而不是计算其密度。我们说明了两个复杂的当代计量经济学示例。第一个是美国宏观经济变量的非线性多元状态空间模型。第二个是一个随机系数TOBIT模型,该模型在营销研究中由20,000个人在20,000个人中适用于200万个人。在这两种情况下,我们都表明,我们的近似家庭比平均场或结构化高斯近似值要准确得多,并且比马尔可夫链蒙特卡洛快得多。最后,我们展示了如何实现我们近似变异推断中的数据子采样,这可能会导致计算时间进一步减少。 MATLAB代码实现了我们示例的方法,包括在补充材料中。
Models with a large number of latent variables are often used to fully utilize the information in big or complex data. However, they can be difficult to estimate using standard approaches, and variational inference methods are a popular alternative. Key to the success of these is the selection of an approximation to the target density that is accurate, tractable and fast to calibrate using optimization methods. Most existing choices can be inaccurate or slow to calibrate when there are many latent variables. Here, we propose a family of tractable variational approximations that are more accurate and faster to calibrate for this case. It combines a parsimonious parametric approximation for the parameter posterior, with the exact conditional posterior of the latent variables. We derive a simplified expression for the re-parameterization gradient of the variational lower bound, which is the main ingredient of efficient optimization algorithms used to implement variational estimation. To do so only requires the ability to generate exactly or approximately from the conditional posterior of the latent variables, rather than to compute its density. We illustrate using two complex contemporary econometric examples. The first is a nonlinear multivariate state space model for U.S. macroeconomic variables. The second is a random coefficients tobit model applied to two million sales by 20,000 individuals in a large consumer panel from a marketing study. In both cases, we show that our approximating family is considerably more accurate than mean field or structured Gaussian approximations, and faster than Markov chain Monte Carlo. Last, we show how to implement data sub-sampling in variational inference for our approximation, which can lead to a further reduction in computation time. MATLAB code implementing the method for our examples is included in supplementary material.