论文标题

促销排序

Promotion Sorting

论文作者

Defant, Colin, Kravitz, Noah

论文摘要

Schützenberger的促销操作员是一个广泛研究的两者,可置入有限孔的线性扩展。我们引入了该操作员的天然扩展名$ \ partial $,该$ $ \ topial $均在poset的所有标签上。我们证明了$ \ partial $的几个属性;特别是,我们表明,对于$ n $ element poset $ p $的每个标签$ l $,标签$ \ partial^{n-1}(l)$是$ p $的线性扩展。因此,我们可以将由$ \ partial $定义的动态系统视为将标记为线性扩展的排序过程。对于所有$ 0 \ leq k \ leq n-1 $,我们表征了$ n $ element posets $ p $,这些标签允许至少需要$ n-k-1 $ tererations $ \ partial $迭代,以便成为线性扩展。 $ k = 0 $涉及需要最大可能迭代数量才能排序的标签;我们称这些标签纠结。我们明确列举了一大批我们称为膨胀的森林posets的纠结标签。对于任意有限的POSET,我们展示了如何枚举可排序标签,这是标签$ l $,以使$ \ partial(l)$是线性扩展。

Schützenberger's promotion operator is an extensively-studied bijection that permutes the linear extensions of a finite poset. We introduce a natural extension $\partial$ of this operator that acts on all labelings of a poset. We prove several properties of $\partial$; in particular, we show that for every labeling $L$ of an $n$-element poset $P$, the labeling $\partial^{n-1}(L)$ is a linear extension of $P$. Thus, we can view the dynamical system defined by $\partial$ as a sorting procedure that sorts labelings into linear extensions. For all $0\leq k\leq n-1$, we characterize the $n$-element posets $P$ that admit labelings that require at least $n-k-1$ iterations of $\partial$ in order to become linear extensions. The case in which $k=0$ concerns labelings that require the maximum possible number of iterations in order to be sorted; we call these labelings tangled. We explicitly enumerate tangled labelings for a large class of posets that we call inflated rooted forest posets. For an arbitrary finite poset, we show how to enumerate the sortable labelings, which are the labelings $L$ such that $\partial(L)$ is a linear extension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源