论文标题
n = 4 sym中的一环簇相邻的注释
A Note on One-loop Cluster Adjacency in N = 4 SYM
论文作者
论文摘要
我们研究了最大超对称阳米尔斯理论中振幅的簇邻接猜想。我们表明,N点一环NMHV比功能满足Steinmann群集的邻接。我们还表明,单循环BDS样归一化的NMHV振幅满足Yangian不变性和最终符号条目之间的聚类邻接。我们提出了Plücker坐标,二次群集变量和NMHV Yangian不变性的群集邻接特性的猜想,这些概括概括了弱分离的概念。
We study cluster adjacency conjectures for amplitudes in maximally supersymmetric Yang-Mills theory. We show that the n-point one-loop NMHV ratio function satisfies Steinmann cluster adjacency. We also show that the one-loop BDS-like normalized NMHV amplitude satisfies cluster adjacency between Yangian invariants and final symbol entries up to 9-points. We present conjectures for cluster adjacency properties of Plücker coordinates, quadratic cluster variables, and NMHV Yangian invariants that generalize the notion of weak separation.