论文标题

非均匀随机简单络合物的共同体学组的相变

Phase transition in cohomology groups of non-uniform random simplicial complexes

论文作者

Cooley, Oliver, Del Giudice, Nicola, Kang, Mihyun, Sprüssel, Philipp

论文摘要

我们考虑一个随机简单复合物的广义模型,该模型由随机超图引起。我们的模型是通过将非均匀二项式随机超图的向下闭合而生成的,其中每个$ k $,每组$ k+1 $ 1 $ vertices构成一个边缘,并独立使用一些概率$ p_k $。作为一种特殊情况,它包含了由Meshulam和Wallach引入的(均匀)随机简单复合物的广泛研究模型[随机结构和算法34(2009),否。 3,第408-417页]。 根据任意的Abelian集团$ r $的共同体学小组的消失,我们考虑了这种新模型上的连通性的更高维度概念。我们证明,这种连接性的概念显示了相变并确定阈值。我们还证明了自然过程解释的打击时间结果,其中简单及其向下闭合被一一添加。此外,我们确定了相变时临界窗口内的同胞组的渐近行为。

We consider a generalised model of a random simplicial complex, which arises from a random hypergraph. Our model is generated by taking the downward-closure of a non-uniform binomial random hypergraph, in which for each $k$, each set of $k+1$ vertices forms an edge with some probability $p_k$ independently. As a special case, this contains an extensively studied model of a (uniform) random simplicial complex, introduced by Meshulam and Wallach [Random Structures & Algorithms 34 (2009), no. 3, pp. 408-417]. We consider a higher-dimensional notion of connectedness on this new model according to the vanishing of cohomology groups over an arbitrary abelian group $R$. We prove that this notion of connectedness displays a phase transition and determine the threshold. We also prove a hitting time result for a natural process interpretation, in which simplices and their downward-closure are added one by one. In addition, we determine the asymptotic behaviour of cohomology groups inside the critical window around the time of the phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源