论文标题

将声子精度与高斯近似电势模型中的高传递性相结合

Combining phonon accuracy with high transferability in Gaussian approximation potential models

论文作者

George, Janine, Hautier, Geoffroy, Bartók, Albert P., Csányi, Gábor, Deringer, Volker L.

论文摘要

机器学习驱动的原子间电位(包括高斯近似电势(GAP)模型)是用于原子模拟的新兴工具。在这里,我们解决了一个方法论问题,即如何拟合一个可以准确预测配置空间特定区域的振动特性的间隙模型,同时保持灵活性和向他人的可传递性。我们使用间隙拟合的自适应正则化,该缝隙适合任何给定原子的绝对力量级,从而探索了贝叶斯对差距正则化的解释为“预期误差”,及其对感兴趣材料的物理特性预测的影响。该方法可以为结构多样的硅同素异形物对声子模式(在0.1-0.2 THz之内)进行出色的预测,并且可以与现有的拟合数据库相结合,以获得高传递性。这些发现和工作流程预计将对间隙驱动的材料更广泛地建模很有用。

Machine learning driven interatomic potentials, including Gaussian approximation potential (GAP) models, are emerging tools for atomistic simulations. Here, we address the methodological question of how one can fit GAP models that accurately predict vibrational properties in specific regions of configuration space, whilst retaining flexibility and transferability to others. We use an adaptive regularization of the GAP fit that scales with the absolute force magnitude on any given atom, thereby exploring the Bayesian interpretation of GAP regularization as an "expected error", and its impact on the prediction of physical properties for a material of interest. The approach enables excellent predictions of phonon modes (to within 0.1-0.2 THz) for structurally diverse silicon allotropes, and it can be coupled with existing fitting databases for high transferability. These findings and workflows are expected to be useful for GAP-driven materials modeling more generally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源