论文标题

正常和不可还原的ADIC空间,有限形态的开放性和Stein分解

Normal and Irreducible Adic Spaces, the Openness of Finite Morphisms and a Stein Factorization

论文作者

Mann, Lucas

论文摘要

我们将刚性分析空间的几种基本几何特性转移到ADIC空间的世界中,更准确地说,是ADIC空间的类别,这些空间是在非Archimedean领域上(弱)有限类型的局部(弱)。这包括正态性,不可约性(特别是不可约组件)和Stein分解定理。最值得注意的是,我们表明,在基础和目标空间的轻度假设下,ADIC空间的有限形态是开放的。

We transfer several elementary geometric properties of rigid-analytic spaces to the world of adic spaces, more precisely to the category of adic spaces which are locally of (weakly) finite type over a non-archimedean field. This includes normality, irreducibility (in particular irreducible components) and a Stein factorization theorem. Most notably we show that finite morphisms of adic spaces are open under mild assumptions on the base and target space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源