论文标题
随机平面图中的预期图案数量和子纸的发生数量
Expected number of pattern and submap occurrences in random planar maps
论文作者
论文摘要
Drmota和Stufler最近证明,当边缘的数量转移到无穷大时,给定映射的预期模式发生数量是渐近线性的。在本文中,我们通过不同的方法改善了它们的结果。我们的方法使我们能够开发一种系统的方法来计算线性(主要)术语的显式常数,并表明它是一个正理性的数字。此外,通过扩展我们的方法,我们还解决了相应的子束事件出现问题。
Drmota and Stufler proved recently that the expected number of pattern occurrences of a given map is asymptotically linear when the number of edges goes to infinity. In this paper we improve their result by means of a different method. Our method allows us to develop a systematic way for computing the explicit constant of the linear (main) term and shows that it is a positive rational number. Moreover, by extending our method, we also solve the corresponding problem of submap occurrences.