论文标题

平行多种假设算法,用于避免交通和碰撞的关键性估计

Parallel Multi-Hypothesis Algorithm for Criticality Estimation in Traffic and Collision Avoidance

论文作者

Morales, Eduardo Sánchez, Membarth, Richard, Gaull, Andreas, Slusallek, Philipp, Dirndorfer, Tobias, Kammenhuber, Alexander, Lauer, Christoph, Botsch, Michael

论文摘要

由于目前对自动驾驶和车辆主动安全性的发展,因此对于能够实时执行复杂的临界预测的算法的必要性越来越大。能够处理多对象的流量方案有助于实施各种汽车应用程序,例如用于预防碰撞和缓解碰撞的驾驶员辅助系统以及自动驾驶汽车的下落系统。 我们提出了具有可行架构的完全基于模型的算法。提出的算法可以通过模拟数百万轨迹组合并检测物体之间的碰撞来评估复杂,多模式(车辆和行人)交通情况的关键。该算法能够在很早的阶段估算即将到来的批判性,证明其在车辆安全系统和自动驾驶应用中的潜力。测试车辆嵌入式系统上的实现以典型的方式证明了算法与现代汽车的硬件可能性的兼容性。对于具有11个动态对象的复杂交通情况,在驱动器PX 〜2的GPU上,评估了超过8600万个姿势组合。

Due to the current developments towards autonomous driving and vehicle active safety, there is an increasing necessity for algorithms that are able to perform complex criticality predictions in real-time. Being able to process multi-object traffic scenarios aids the implementation of a variety of automotive applications such as driver assistance systems for collision prevention and mitigation as well as fall-back systems for autonomous vehicles. We present a fully model-based algorithm with a parallelizable architecture. The proposed algorithm can evaluate the criticality of complex, multi-modal (vehicles and pedestrians) traffic scenarios by simulating millions of trajectory combinations and detecting collisions between objects. The algorithm is able to estimate upcoming criticality at very early stages, demonstrating its potential for vehicle safety-systems and autonomous driving applications. An implementation on an embedded system in a test vehicle proves in a prototypical manner the compatibility of the algorithm with the hardware possibilities of modern cars. For a complex traffic scenario with 11 dynamic objects, more than 86 million pose combinations are evaluated in 21 ms on the GPU of a Drive PX~2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源