论文标题
建模,模拟和控制的几何方法
A Geometric Approach to Modeling, Simulation and Control
论文作者
论文摘要
在这项工作中,我们利用离散的几何力学来得出二阶变分积分器,以模拟刚体的动力学。开发的集成器是为了模拟自由刚体的运动和四轮旋转。我们证明了模拟器的有效性及其在没有能量阻尼的机械系统的长期整合中的准确性。此外,这项工作介绍了刚体的几何非线性控制问题,在该刚体中,后踩式控制器的设计用于完整的位置和方向。态度动力学和控制是在\ textbf {so(3)}上定义的,以避免与欧拉角或偶然偶然的偶然性相关的奇异性。该控制器显示可跟踪大型旋转态度信号接近$ 180^\ circ $,几乎可以实现旋转的全球渐近稳定性。将四轮旋转作为一个非线性模型,我们应用反向替代控制定律的示例。此外,为实现逼真的模拟目的而添加了旨在推导作用于转子的空气动力和扭矩的空气动力学模型,并证明了派生的控制方法的有效性。
In this work, we utilize discrete geometric mechanics to derive a 2nd-order variational integrator so as to simulate rigid body dynamics. The developed integrator is to simulate the motion of a free rigid body and a quad-rotor. We demonstrate the effectiveness of the simulator and its accuracy in long term integration of mechanical systems without energy damping. Furthermore, this work deals with the geometric nonlinear control problem for rigid bodies where backstepping controller is designed for full tracking of position and orientation. The attitude dynamics and control are defined on \textbf{SO(3)} to avoid singularities associated with Euler angles or ambiguities accompanying quaternion representation. The controller is shown to track large rotation attitude signals close to $180^\circ$ achieving almost globally asymptotic stability for rotations. A Quad-rotor is presented as an example of an under-actuated system with nonlinear model on which we apply the backstepping control law. In addition, an aerodynamic model aiming at deriving the aerodynamic forces and torques acting on rotors is added for realistic simulation purposes and to testify the effectiveness of the derived control method.