论文标题

人类务实推理的率视图

A Rate-Distortion view of human pragmatic reasoning

论文作者

Zaslavsky, Noga, Hu, Jennifer, Levy, Roger P.

论文摘要

人类务实推理的基础是什么计算原则?对实用主义的一种重要方法是《理性言语法》(RSA)框架,该框架将务实的推理作为概率说话者和听众相互推理。尽管RSA享有广泛的经验支持,但尚不清楚这种递归推理的动态是否可以由一般优化原则支配。在这里,我们对RSA框架进行了新的分析,该框架解决了这个问题。首先,我们表明RSA递归实现了交替的最大化,以优化预期效用和交流努力之间的权衡。在此基础上,我们研究了RSA递归的动力学,并否认了猜想,即预期的效用可以通过递归深度改善。其次,我们表明RSA可以基于速率理论,同时保持相似的能力来解释人类行为并避免RSA偏向随机话语的产生。这项工作进一步发展了RSA模型的数学理解,并表明一般信息理论原理可能引起人类实用的推理。

What computational principles underlie human pragmatic reasoning? A prominent approach to pragmatics is the Rational Speech Act (RSA) framework, which formulates pragmatic reasoning as probabilistic speakers and listeners recursively reasoning about each other. While RSA enjoys broad empirical support, it is not yet clear whether the dynamics of such recursive reasoning may be governed by a general optimization principle. Here, we present a novel analysis of the RSA framework that addresses this question. First, we show that RSA recursion implements an alternating maximization for optimizing a tradeoff between expected utility and communicative effort. On that basis, we study the dynamics of RSA recursion and disconfirm the conjecture that expected utility is guaranteed to improve with recursion depth. Second, we show that RSA can be grounded in Rate-Distortion theory, while maintaining a similar ability to account for human behavior and avoiding a bias of RSA toward random utterance production. This work furthers the mathematical understanding of RSA models, and suggests that general information-theoretic principles may give rise to human pragmatic reasoning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源