论文标题
与公平限制的网络欺凌检测
Cyberbullying Detection with Fairness Constraints
论文作者
论文摘要
网络欺凌是当今数字社会在线社交互动中的一种普遍不利现象。尽管众多计算研究着重于增强机器学习算法的网络欺凌检测性能,但提出的模型倾向于承载和加强意想不到的社会偏见。在这项研究中,我们试图回答“我们可以通过公平限制指导模型培训来减轻网络欺凌检测模型的意外偏见吗?”。为此,我们提出了一种模型培训计划,该计划可以采用公平限制并使用不同的数据集验证我们的方法。我们证明,可以成功缓解各种类型的意外偏见而不会损害模型质量。我们认为,我们的工作有助于追求公正,透明和道德的机器学习解决方案,以实现网络社会健康。
Cyberbullying is a widespread adverse phenomenon among online social interactions in today's digital society. While numerous computational studies focus on enhancing the cyberbullying detection performance of machine learning algorithms, proposed models tend to carry and reinforce unintended social biases. In this study, we try to answer the research question of "Can we mitigate the unintended bias of cyberbullying detection models by guiding the model training with fairness constraints?". For this purpose, we propose a model training scheme that can employ fairness constraints and validate our approach with different datasets. We demonstrate that various types of unintended biases can be successfully mitigated without impairing the model quality. We believe our work contributes to the pursuit of unbiased, transparent, and ethical machine learning solutions for cyber-social health.